5,996 research outputs found

    A BCS-BEC crossover in the extended Falicov-Kimball model: Variational cluster approach

    Full text link
    We study the spontaneous symmetry breaking of the excitonic insulator state induced by the Coulomb interaction UU in the two-dimensional extended Falicov-Kimball model. Using the variational cluster approximation (VCA) and Hartree-Fock approximation (HFA), we evaluate the order parameter, single-particle excitation gap, momentum distribution functions, coherence length of excitons, and single-particle and anomalous excitation spectra, as a function of UU at zero temperature. We find that in the weak-to-intermediate coupling regime, the Fermi surface plays an essential role and calculated results can be understood in close correspondence with the BCS theory, whereas in the strong-coupling regime, the Fermi surface plays no role and results are consistent with the picture of BEC. Moreover, we find that HFA works well both in the weak- and strong-coupling regime, and that the difference between the results of VCA and HFA mostly appears in the intermediate-coupling regime. The reason for this is discussed from a viewpoint of the self-energy. We thereby clarify the excitonic insulator state that typifies either a BCS condensate of electron-hole pairs (weak-coupling regime) or a Bose-Einstein condensate of preformed excitons (strong-coupling regime).Comment: 11 pages, 9 figure

    Magnetic digital flop of ferroelectric domain with fixed spin chirality in a triangular lattice helimagnet

    Full text link
    Ferroelectric properties in magnetic fields of varying magnitude and direction have been investigated for a triangular-lattice helimagnet CuFe1-xGaxO2 (x=0.035). The magnetoelectric phase diagrams were deduced for magnetic fields along [001], [110], and [1-10] direction, and the in-plane magnetic field was found to induce the rearrangement of six possible multiferroic domains. Upon every 60-degree rotation of in-plane magnetic field around the c-axis, unique 120-degree flop of electric polarization occurs as a result of the switch of helical magnetic q-vector. The chirality of spin helix is always conserved upon the q-flop. The possible origin is discussed in the light of the stable structure of multiferroic domain wall.Comment: 5 pages, 4 figures. Accepted in Phys. Rev. Let

    Impurity-doping induced ferroelectricity in frustrated antiferromagnet CuFeO2

    Full text link
    Dielectric responses have been investigated on the triangular-lattice antiferromagnet CuFeO2 and its site-diluted analogs CuFe1-xAlxO2 (x=0.01 and 0.02) with and without application of magnetic field. We have found a ferroelectric behavior at zero magnetic field for x=0.02. At any doping level, the onset field of the ferroelectricity always coincides with that of the noncollinear magnetic structure while the transition field dramatically decreases to zero field with Al doping. The results imply the further possibility of producing the ferroelectricity by modifying the frustrated spin structure in terms of site-doping and external magnetic field.Comment: 4 pages, 4 figure

    Theory of the waterfall phenomenon in cuprate superconductors

    Full text link
    Based on exact diagonalization and variational cluster approximation calculations we study the relationship between charge transfer models and the corresponding single band Hubbard models. We present an explanation for the waterfall phenomenon observed in angle resolved photoemission spectroscopy (ARPES) on cuprate superconductors. The phenomenon is due to the destructive interference between the phases of the O2p orbitals belonging to a given Zhang-Rice singlet and the Bloch phases of the photohole which occurs in certain regions of k-space. It therefore may be viewed as a direct experimental visualisation of the Zhang-Rice construction of an effective single band model for the CuO2 plane.Comment: 11 pages, 9 Postscript figure

    Mott transition and ferrimagnetism in the Hubbard model on the anisotropic kagom\'e lattice

    Full text link
    Mott transition and ferrimagnetism are studied in the Hubbard model on the anisotropic kagom\'e lattice using the variational cluster approximation and the phase diagram at zero temperature and half-filling is analyzed. The ferrimagnetic phase rapidly grows as the geometric frustration is relaxed, and the Mott insulator phase disappears in moderately frustrated region, showing that the ferrimagnetic fluctuations stemming from the relaxation of the geometric frustration is enhanced by the electron correlations. In metallic phase, heavy fermion behavior is observed and mass enhancement factor is computed. Enhancement of effective spatial anisotropy by the electron correlations is also confirmed in moderately frustrated region, and its effect on heavy fermion behavior is examined.Comment: 5 pages, 6 figure

    Variation of Entanglement Entropy in Scattering Process

    Get PDF
    In a scattering process, the final state is determined by an initial state and an S-matrix. We focus on two-particle scattering processes and consider the entanglement between these particles. For two types initial states; i.e., an unentangled state and an entangled one, we calculate perturbatively the change of entanglement entropy from the initial state to the final one. Then we show a few examples in a field theory and in quantum mechanics.Comment: 13 pages; v2: refs. adde
    • …
    corecore